Utilisation of Quartz Crystal Microbalance Sensors with Dissipation (QCM-D) for a Clauss Fibrinogen Assay in Comparison with Common Coagulation Reference Methods

نویسندگان

  • Stephanie Oberfrank
  • Hartmut Drechsel
  • Stefan Sinn
  • Hinnak Northoff
  • Frank K. Gehring
چکیده

The determination of fibrinogen levels is one of the most important coagulation measurements in medicine. It plays a crucial part in diagnostic and therapeutic decisions, often associated with time-critical conditions. The commonly used measurement is the Clauss fibrinogen assay (CFA) where plasma is activated by thrombin reagent and which is conducted by mechanical/turbidimetric devices. As quartz crystal microbalance sensors with dissipation (QCM-D) based devices have a small footprint, can be operated easily and allow measurements independently from sample transportation time, laboratory location, availability and opening hours, they offer a great opportunity to complement laboratory CFA measurements. Therefore, the objective of the work was to (1) transfer the CFA to the QCM-D method; (2) develop an easy, time- and cost-effective procedure and (3) compare the results with references. Different sensor coatings (donor's own plasma; gold surface) and different QCM-D parameters (frequency signal shift; its calculated turning point; dissipation signal shift) were sampled. The results demonstrate the suitability for a QCM-D-based CFA in physiological fibrinogen ranges. Results were obtained in less than 1 min and in very good agreement with a standardized reference (Merlin coagulometer). The results provide a good basis for further investigation and pave the way to a possible application of QCM-D in clinical and non-clinical routine in the medical field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Fibrinogen and Coagulation Factor VIII in Plasma by a Quartz Crystal Microbalance Biosensor

A quartz crystal microbalance (QCM) biosensor with nanogram sensitivity has been constructed through a reasonable designing and biological processing of the piezoelectric quartz crystals. Due to its highly sensitivity, real time detection and low cost, the proposed QCM biosensor has a promising potential in blood coagulation research. In the current study, the QCM biosensor was used to determin...

متن کامل

Reusable hydroxyapatite nanocrystal sensors for protein adsorption.

The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp) nanocrystal sensors was investigated by Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HA...

متن کامل

Vesicles for Signal Amplification in a Biosensor for the Detection of Low Antigen Concentrations

The sensitivity of biosensors is often not sufficient to detect diagnostically relevant biomarker concentrations. In this paper we have utilized a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) to detect dissipative losses induced by the attachment of intact vesicles. We modified a sandwich assay by coupling the secondary antibodies to vesicles. This resulted in an increase of ...

متن کامل

NCO-sP(EO-stat-PO) Coatings on Gold Sensors—a QCM Study of Hemocompatibility

The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide-polypropylene oxide co-polymers NCO-sP(EO-stat-...

متن کامل

Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements.

Adsorption of phospholipid vesicles on titanium dioxide was studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy techniques. Vesicle size, concentration in solution, and bilayer composition were systematically varied. A strong dependence of the QCM-D response (magnitude of the frequency and dissipation factor shifts) on the vesicle concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sensors

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2016